
 1

 Pre-release Movie Ratings Predictor

 Austin Min, Rushil Patel, Riley Wong, Krish Ananth

 CSCI 183: Data Science

 Department of Computer Science, Santa Clara University

 Dr. Smita Ghosh

 December 9, 2024

 2

 Introduction

 This project aims to predict rating metrics for movies before they are even

 released. By analyzing a large dataset of movies and their most influential features, we

 train and test models that will provide the best predictions on the success of a movie

 from the standpoint of ratings. The goal is to create a tool that lets fans, movie-makers,

 and distributors alike understand what makes a movie successful. Unlike the plethora

 of other research that focuses on predicting gross income, we propose that ratings can

 serve as a more nuanced and qualitative measure of a movie's success, reflecting

 audience perceptions and movie popularity more broadly.

 As we continue through the project, we approach aspects of data collection,

 evaluation, and preprocessing as well as model training and analysis. We then discuss

 the limitations of our models, perform an informal experiment on upcoming movies,

 and conclude with future research that could be done to enhance this project.

 Data Collection

 We originally planned to use IMDb because they provide a non-commercial

 dataset on movies here: https://developer.imdb.com/non-commercial-datasets/ .

 However, the data here is split into relational tables, which takes extra effort to process,

 and also lacks some data we particularly want, for example, budget and distributor.

 While the data that we see this dataset lacks is available publicly on their website, to

 obtain the data files with this additional data we need to coordinate a subscription to

 their service.

 We shifted our focus to Rotten Tomatoes and found two datasets on Kaggle

 relating to such data:

 1. https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-an

 d-critic-reviews-dataset?select=rotten_tomatoes_movies.csv

 2. https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-

 movies-and-reviews?select=rotten_tomatoes_movies.csv

https://developer.imdb.com/non-commercial-datasets/
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv

 3

 Of the two, the first dataset looked the most promising because it did not have

 many missing values unlike the second. For the rest of this project, we continued with

 the first dataset.

 There are also public API’s that would let us gather additional data about

 movies. One example is the Open Movie Database API, https://www.omdbapi.com/ .

 However, collecting this data through the API would require a lot of manual effort.

 Furthermore, we are limited to 1,000 API calls a day on the free version. For the scope

 of this project, we deemed this potential resource unnecessary to pursue. However,

 this API would have given us a lot more data on ratings such as from Metacritic, IMDb,

 and Rotten Tomatoes ratings all in one.

 Data Evaluation and Preprocessing

 1. Feature Selection

 To refine the dataset for predicting audience ratings, we began by analyzing

 which columns had predictive potential and discarded irrelevant features. For instance,

 we determined that summarizing fields like "rotten_tomatoes_link" and "movie_info"

 provided no numerical significance that could impact our model in any sort of way, so

 they were removed. We focused on maintaining features with intuitive relevance

 including "runtime," "content_rating," "genre," "directors," "actors," and

 "production_company" which we later evaluated. Meanwhile, we retained

 "audience_rating" as the target variable over the “tomatometer_rating” because we

 believed the abundance of audience ratings would be more reliable than the ratings of

 a few critics per movie. To back this assumption, we see below that audience ratings

 generally are more normally distributed than critic ratings, which is likely due to their

 large numbers.

https://www.omdbapi.com/

 4

 However, the two generally correlate as they increase together as shown in the

 plot below:

 2. Instance Selection

 To ensure the dataset is relevant to modern trends, we excluded movies

 released before the year 2000, since their audience preferences might differ

 significantly from contemporary films. Additionally, movies with fewer than 1,000

 audience ratings were removed to improve data reliability since this is generally a very

 small audience size for the scale and reach of Rotten Tomatoes. These filters refined

 5

 the dataset and focused on recent, widely viewed movies to enhance the accuracy of

 audience rating predictions.

 3. Feature Evaluation

 Content ratings include the ratings “R,” “PG,” “PG-13,” etc. The average

 audience rating for each content rating assigned is listed in the table below. We see

 that most categories perform generally the same overall, with an average rating

 localized around 60.00 with similar deviations. This suggests that content rating

 doesn’t influence the performance of movies much.

 Content Rating Average Std. Dev. Mean Abs. Dev. Instances

 R 57.19 19.92 16.98 3151

 PG-13 59.68 19.01 15.97 1946

 NR 66.43 18.17 14.84 1025

 PG 63.67 18.67 15.78 763

 G 64.89 18.17 15.11 190

 NC17 65.92 20.13 17.10 12

 There are 21 unique genres in total. The 5 highest average-rated and 5 lowest

 average-rated movie genres are listed below. We see a large disparity in average

 audience ratings between these genres. This suggests that genre can have a significant

 impact on movie ratings.

 Genre Average Std. Dev. Mean Abs. Dev. Instances

 Documentary 76.39 13.07 9.95 665

 Sports & Fitness 75.9 12.57 9.72 73

 6

 Special Interest 73.84 14.82 11.44 460

 Anime & Manga 72.5 13.59 11.00 6

 Faith & Spirituality 71.53 13.83 10.22 30

 … … … …

 Comedy 56.73 18.21 15.35 2461

 Science Fiction & Fantasy 56.64 20.52 17.22 786

 Mystery & Suspense 53.66 19.43 16.45 1478

 Cult Movies 52.42 17.01 14.42 12

 Horror 45.44 17.92 14.87 767

 Production companies include studios and distributors like “Disney,” “Warner

 Bros.,” and “Paramount.” Overall, we notice that as production companies increase in

 total movies they’ve produced, the average ratings for their movies tend to normalize

 around 55-60%. This may be due to the “law of large numbers” since the ratings of

 55-60% are the ratings we see most common in the dataset. Meanwhile, production

 companies with a generally low number of movies have distributed average ratings.

 7

 Run time appears distributed in a “filled-in” v-shape. In other words, short

 movies tend to perform well, average-length movies spread the entire spectrum, and

 long movies perform well again. This could be because short and long movies alike are

 generally special features and may tend to be more highly celebrated.

 4. Feature Encoding

 Preprocessing steps were applied to standardize and encode categorical

 features. Categorical fields like "genre" and "content_rating" were one-hot encoded to

 facilitate their incorporation into machine learning models. This turned our 2 columns

 into 27 columns. We did not do the same for “directors,” “actors,” and “production

 company” since they had a larger pool of classes which, if one-hot encoded, would

 create over 20,000 unique columns. This dimensionality would make our models very

 computationally expensive as well as throw off our models due to the inherent

 difficulties of handling high-dimensionalities. Therefore, we aimed to try alternative

 approaches. Ultimately, we decided on a frequency-based encoding where the most

 common actors were given the lowest encodings. Both the “actors” and “directors”

 8

 features were integer encoded to integrate this data into our models. We set a 10%

 threshold on actors and encoded the discarded actors simply as the largest encoding

 plus one. We did the same for directors but, instead, our threshold was that they

 needed to have directed at least 2 movies—this alone removed over half of the pool of

 directors. This strategy helped remove most of the actors and directors that were lesser

 known. We deemed the lesser-known actors as the ones that appear at a lower

 frequency throughout the dataset. Setting a 10% threshold allowed the more popular

 actors and directors to be featured more prominently within our model.

 The concept of our model revolves around the idea that famous actors and

 directors tend to produce movies with more box office success. As a result, the lower

 integer encoded actors and directors would tend to be more favorable in our model

 when it comes to determining box office success for a particular movie. We decided to

 keep all production companies for encoding since there were about 1,500 in total

 which was manageable. We later tried changing these thresholds and retraining our

 models on the altered datasets, but overall we found that these values worked the best

 error-wise and computationally.

 One additional method we used was to only take the top 3 actors listed per

 movie via the lowest encodings, and create distinct columns “actors1,” “actors2,” and

 “actors3.” We did this while keeping the threshold percentage method, so, if there were

 no significant 2nd or 3rd supporting actors, then their encoding would still be the

 highest encoding plus one. However, this may not be the most accurate method, as

 larger movies would have a bigger cast with much more popular actors than smaller

 movies. Nevertheless, it improved the model marginally so it was kept.

 5. Normalization

 To ensure that the various machine learning algorithms that we implemented are

 not greatly influenced by the relative size of the features, we decided to normalize the

 data. This was done using Sklearn’s MinMaxScaler which divided the actual value by

 9

 the max value of the column it belonged to. The features that we scaled were

 “runtime,” “directors,” “actors1,” “actors2,” “actors3,” and “production company.” Since

 most of our algorithms were dependent on a distance function, this would improve the

 accuracy of our models. Without this scaler, the distance function would amplify the

 features with relatively larger values.

 Model Training and Analysis

 To train our models, we split our data into train and test with 80% going to the

 training dataset and 20% going to the testing dataset. To accurately compare our

 models against each other, we used mean absolute error. Additionally, we can

 intuitively use mean absolute error to evaluate the quality of an individual model without

 needing comparisons, as the true values of audience ratings are bounded between 0

 and 100. For instance, a model's mean absolute error of 10 indicates that, on average,

 the model's predictions deviate by 10 rating points, making it easy to judge whether

 the error is acceptable in general.

 1. Linear Regression

 The first model that we implemented was Linear Regression. Initially, we had a

 feeling that this model would not be the best representation as our data could not have

 a linear trend. However, when implemented, we got a mean absolute error of 13.00 to

 14.00 which depended on the random sampling of the train-test split. Similarly, when

 we tested on the same training dataset it got very similar results, validating the lack of

 overfitting.

 2. Logistic Regression

 The second model that we implemented was the Logistic Regression model.

 Using mean absolute error as our error function, this model outputted a training error

 usually around 14.75 while the test error was usually slightly higher around 15.25.

 10

 3. Linear SVC

 We were curious as to whether using an SVC model would lead to better results

 than the regression models, so we decided to test it out on our dataset. The test error

 came to about 15.18 on average, while the training error for the model came out to

 approximately 15.46, also depending on the sampling of the train-test split.

 4. Kernel SVM

 We were also curious about the effects of kernelization, and if our models could

 be improved upon using Kernel SVM. Our Kernel SVM model performed with a test

 error of about 14.70 and the training error came to be approximately 14.54 depending

 on the sampling, slightly better than using Linear SVC.

 5. Decision Tree Classification

 The Decision Tree Classifier can handle non-linear data well while handling both

 numerical and categorical data properly. We implemented this model and usually got a

 mean absolute error of around 15.00 to 16.00 depending on the train-test sampling. We

 noticed that the best depth of the decision tree was usually around 6 to 8.

 11

 6. k -Nearest Neighbor

 The next approach that was implemented was the k -Nearest Neighbor model. In

 our code, we implemented this model by trying all k values in the range 0 to 80. The

 best minimum absolute error that we got from all values of k was approximately 16.00

 to 17.00. We generated a graph to see the association between the k values and the

 error and saw that the error value increased for values between 1 to 10, meaning it

 could be overfitting using those k ’s or being subject to outliers. However, the general

 trend after k equaled 10 was that the error began to generally decrease with some

 minor deviations along the way. Using the elbow method, the ideal value of k would be

 around 20 to 30.

 7. Distance Weighted k- NN

 The implementation of distance-weighted k- NN was quite similar to the regular

 k- NN approach defined above. However, the plot of distance-weighted k- NN was

 different, especially for small values of k . In regular k- NN we saw the error increase in

 the range k equaling 1 to 10. However, for distance-weighted k- NN, the error generally

 12

 decreased throughout all k values. This showcases that since we are using weights,

 this model can handle outliers better while not overfitting the data. Using the elbow

 method to determine the ideal value of k would help us determine the value of k to be

 approximately 20 to 30 again, just like the previous k- NN model. The best minimum

 absolute error was similar to the regular k- NN model, with this model giving a minimum

 error of 16.00 to 17.00 as well.

 8. Locally Weighted Linear Regression

 So far, Linear Regression seems to be the model that performs the best. Another

 modified version of k- NN that we had implemented was Locally Weighted Linear

 Regression to try to stick to the success of this model. This model would take the k

 nearest neighbors of the new data point and then fit a linear regression line only

 through those points. Therefore, this model does not focus on generalization from the

 entire data but instead emphasizes making proper predictions based on local data. We

 generally saw that a large k value was needed for this model: depending on the

 train-test split, the optimal k was usually between 400 to 600. In general, the minimum

 absolute error occurred around k as 500 which tended to range from 12.80 to 14.00

 13

 depending on the sample. This was a generally solid model in comparison to the

 previously implemented models. However, this model was very computationally

 expensive and took over 10 times longer to run than other models. Furthermore, there

 existed no module in our Python libraries that provided this, so we had to implement it

 ourselves and it may not be as robust.

 9. Conclusions

 The best and most reliable model appeared to be linear regression with a mean

 absolute error of around 13.00 to 14.00. It is important to contextualize this

 performance. Given that the true values of ratings range only from 0 to 100, a mean

 absolute error of even 13.00 represents a notable percentage of the total range, which

 suggests there is a limit to the model's practical utility. However, considering that most

 individual features we evaluated in the dataset originally had mean absolute deviations

 ranging from about 9.00 to 17.00 when calculating their respective averages, most of

 our models' performances align with the inherent variability in the data. That said, we

 had hoped that aggregating the data altogether would help our models identify

 stronger patterns and would lead to significantly improved predictive accuracy, but the

 14

 results suggest that the underlying complexity or noise in the data may still be a limiting

 factor.

 Applying The Model

 For the sake of interest, we wanted to apply our model to upcoming movies to

 predict how they will do before their release. We retrained the most promising models

 on all the data available (keeping the best k -values we found where necessary) and got

 these predictions for these four upcoming movies:

 Movie Name
 Predicted Audience Rating

 Lin. Reg. Decision Tree k- NN

 A Minecraft Movie 58.17 49.00 51.00

 Mufasa: The Lion King 78.17 85.00 72.00

 Captain America: Brave New World 51.91 49.00 49.00

 Flight Risk 54.70 59.0 38.0

 Conclusion

 There are many challenges associated with movie predictions. The feature we

 wanted the most but could not obtain reasonably was budget. We hypothesize that

 budget is a large predictor because it can serve as a metric that correlates to cast

 quality, production quality, and marketing quality. However, given the scope of this

 project, there was not enough time to acquire this data.

 We should also consider the variability of ratings due to factors such as

 competitive releases, social media buzz, and revivals through streaming services. With

 more time, we would like to add more features to the data set. Along with the

 aforementioned features, it would likely prove useful to have data such as if a movie is

 15

 a sequel, if it is based on an existing franchise (book, game, TV show), or what type of

 role significant actors play (protagonist, villain, etc).

 Another important consideration is how our preprocessing techniques

 themselves influence prediction accuracy. While we aimed to uncover patterns through

 feature engineering and data aggregation, our results suggest that the inherent

 variability in audience ratings might limit the achievable precision without additional

 data. Exploring advanced ways of encoding data and other learning techniques could

 potentially capture relationships between features and ratings more effectively.

 Additional Information

 The data parsing, evaluation, and encoding processes, as well as the model

 training and analysis, can be found below:

 https://github.com/au-s-ti-n/movie_predictor

 The relevant directions for installing necessary packages and running the code

 repository can be found in the README.md file.

https://github.com/au-s-ti-n/movie_predictor

 16

 References

 Khalid Ibnal Asad, T. Ahmed and M. Saiedur Rahman, "Movie popularity classification

 based on inherent movie attributes using C4.5, PART and correlation

 coefficient," 2012 International Conference on Informatics, Electronics & Vision

 (ICIEV), 2012. https://ieeexplore.ieee.org/document/6317401

 Vikranth Udandarao, Pratyush Gupta. “Movie Revenue Prediction Using Machine

 Learning Models,” 2024. https://arxiv.org/pdf/2405.11651v1

https://ieeexplore.ieee.org/document/6317401
https://arxiv.org/pdf/2405.11651v1

