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 Introduction 

 This project aims to predict rating metrics for movies before they are even 

 released. By analyzing a large dataset of movies and their most influential features, we 

 train and test models that will provide the best predictions on the success of a movie 

 from the standpoint of ratings. The goal is to create a tool that lets fans, movie-makers, 

 and distributors alike understand what makes a movie successful. Unlike the plethora 

 of other research that focuses on predicting gross income, we propose that ratings can 

 serve as a more nuanced and qualitative measure of a movie's success, reflecting 

 audience perceptions and movie popularity more broadly. 

 As we continue through the project, we approach aspects of data collection, 

 evaluation, and preprocessing as well as model training and analysis. We then discuss 

 the limitations of our models, perform an informal experiment on upcoming movies, 

 and conclude with future research that could be done to enhance this project. 

 Data Collection 

 We originally planned to use IMDb because they provide a non-commercial 

 dataset on movies here:  https://developer.imdb.com/non-commercial-datasets/  . 

 However, the data here is split into relational tables, which takes extra effort to process, 

 and also lacks some data we particularly want, for example, budget and distributor. 

 While the data that we see this dataset lacks is available publicly on their website, to 

 obtain the data files with this additional data we need to coordinate a subscription to 

 their service. 

 We shifted our focus to Rotten Tomatoes and found two datasets on Kaggle 

 relating to such data: 

 1.  https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-an 

 d-critic-reviews-dataset?select=rotten_tomatoes_movies.csv 

 2.  https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes- 

 movies-and-reviews?select=rotten_tomatoes_movies.csv 

https://developer.imdb.com/non-commercial-datasets/
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv
https://www.kaggle.com/datasets/andrezaza/clapper-massive-rotten-tomatoes-movies-and-reviews?select=rotten_tomatoes_movies.csv
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 Of the two, the first dataset looked the most promising because it did not have 

 many missing values unlike the second. For the rest of this project, we continued with 

 the first dataset. 

 There are also public API’s that would let us gather additional data about 

 movies. One example is the Open Movie Database API,  https://www.omdbapi.com/  . 

 However, collecting this data through the API would require a lot of manual effort. 

 Furthermore, we are limited to 1,000 API calls a day on the free version. For the scope 

 of this project, we deemed this potential resource unnecessary to pursue. However, 

 this API would have given us a lot more data on ratings such as from Metacritic, IMDb, 

 and Rotten Tomatoes ratings all in one. 

 Data Evaluation and Preprocessing 

 1. Feature Selection 

 To refine the dataset for predicting audience ratings, we began by analyzing 

 which columns had predictive potential and discarded irrelevant features. For instance, 

 we determined that summarizing fields like "rotten_tomatoes_link" and "movie_info" 

 provided no numerical significance that could impact our model in any sort of way, so 

 they were removed. We focused on maintaining features with intuitive relevance 

 including "runtime," "content_rating," "genre," "directors," "actors," and 

 "production_company" which we later evaluated. Meanwhile, we retained 

 "audience_rating" as the target variable over the “tomatometer_rating” because we 

 believed the abundance of audience ratings would be more reliable than the ratings of 

 a few critics per movie. To back this assumption, we see below that audience ratings 

 generally are more normally distributed than critic ratings, which is likely due to their 

 large numbers. 

https://www.omdbapi.com/
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 However, the two generally correlate as they increase together as shown in the 

 plot below: 

 2. Instance Selection 

 To ensure the dataset is relevant to modern trends, we excluded movies 

 released before the year 2000, since their audience preferences might differ 

 significantly from contemporary films. Additionally, movies with fewer than 1,000 

 audience ratings were removed to improve data reliability since this is generally a very 

 small audience size for the scale and reach of Rotten Tomatoes. These filters refined 
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 the dataset and focused on recent, widely viewed movies to enhance the accuracy of 

 audience rating predictions. 

 3. Feature Evaluation 

 Content ratings include the ratings “R,” “PG,” “PG-13,” etc. The average 

 audience rating for each content rating assigned is listed in the table below. We see 

 that most categories perform generally the same overall, with an average rating 

 localized around 60.00 with similar deviations. This suggests that content rating 

 doesn’t influence the performance of movies much. 

 Content Rating  Average  Std. Dev.  Mean Abs. Dev.  Instances 

 R  57.19  19.92  16.98  3151 

 PG-13  59.68  19.01  15.97  1946 

 NR  66.43  18.17  14.84  1025 

 PG  63.67  18.67  15.78  763 

 G  64.89  18.17  15.11  190 

 NC17  65.92  20.13  17.10  12 

 There are 21 unique genres in total. The 5 highest average-rated and 5 lowest 

 average-rated movie genres are listed below. We see a large disparity in average 

 audience ratings between these genres. This suggests that genre can have a significant 

 impact on movie ratings. 

 Genre  Average  Std. Dev.  Mean Abs. Dev.  Instances 

 Documentary  76.39  13.07  9.95  665 

 Sports & Fitness  75.9  12.57  9.72  73 
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 Special Interest  73.84  14.82  11.44  460 

 Anime & Manga  72.5  13.59  11.00  6 

 Faith & Spirituality  71.53  13.83  10.22  30 

 …  …  …  … 

 Comedy  56.73  18.21  15.35  2461 

 Science Fiction & Fantasy  56.64  20.52  17.22  786 

 Mystery & Suspense  53.66  19.43  16.45  1478 

 Cult Movies  52.42  17.01  14.42  12 

 Horror  45.44  17.92  14.87  767 

 Production companies include studios and distributors like “Disney,” “Warner 

 Bros.,” and “Paramount.” Overall, we notice that as production companies increase in 

 total movies they’ve produced, the average ratings for their movies tend to normalize 

 around 55-60%. This may be due to the “law of large numbers” since the ratings of 

 55-60% are the ratings we see most common in the dataset. Meanwhile, production 

 companies with a generally low number of movies have distributed average ratings. 
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 Run time appears distributed in a “filled-in” v-shape. In other words, short 

 movies tend to perform well, average-length movies spread the entire spectrum, and 

 long movies perform well again. This could be because short and long movies alike are 

 generally special features and may tend to be more highly celebrated. 

 4. Feature Encoding 

 Preprocessing steps were applied to standardize and encode categorical 

 features. Categorical fields like "genre" and "content_rating" were one-hot encoded to 

 facilitate their incorporation into machine learning models. This turned our 2 columns 

 into 27 columns. We did not do the same for “directors,” “actors,” and “production 

 company” since they had a larger pool of classes which, if one-hot encoded, would 

 create over 20,000 unique columns. This dimensionality would make our models very 

 computationally expensive as well as throw off our models due to the inherent 

 difficulties of handling high-dimensionalities. Therefore, we aimed to try alternative 

 approaches. Ultimately, we decided on a frequency-based encoding where the most 

 common actors were given the lowest encodings. Both the “actors” and “directors” 
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 features were integer encoded to integrate this data into our models. We set a 10% 

 threshold on actors and encoded the discarded actors simply as the largest encoding 

 plus one. We did the same for directors but, instead, our threshold was that they 

 needed to have directed at least 2 movies—this alone removed over half of the pool of 

 directors. This strategy helped remove most of the actors and directors that were lesser 

 known. We deemed the lesser-known actors as the ones that appear at a lower 

 frequency throughout the dataset. Setting a 10% threshold allowed the more popular 

 actors and directors to be featured more prominently within our model. 

 The concept of our model revolves around the idea that famous actors and 

 directors tend to produce movies with more box office success. As a result, the lower 

 integer encoded actors and directors would tend to be more favorable in our model 

 when it comes to determining box office success for a particular movie. We decided to 

 keep all production companies for encoding since there were about 1,500 in total 

 which was manageable. We later tried changing these thresholds and retraining our 

 models on the altered datasets, but overall we found that these values worked the best 

 error-wise and computationally. 

 One additional method we used was to only take the top 3 actors listed per 

 movie via the lowest encodings, and create distinct columns “actors1,” “actors2,” and 

 “actors3.” We did this while keeping the threshold percentage method, so, if there were 

 no significant 2nd or 3rd supporting actors, then their encoding would still be the 

 highest encoding plus one. However, this may not be the most accurate method, as 

 larger movies would have a bigger cast with much more popular actors than smaller 

 movies. Nevertheless, it improved the model marginally so it was kept. 

 5. Normalization 

 To ensure that the various machine learning algorithms that we implemented are 

 not greatly influenced by the relative size of the features, we decided to normalize the 

 data. This was done using Sklearn’s MinMaxScaler which divided the actual value by 
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 the max value of the column it belonged to. The features that we scaled were 

 “runtime,” “directors,” “actors1,” “actors2,” “actors3,” and “production company.” Since 

 most of our algorithms were dependent on a distance function, this would improve the 

 accuracy of our models. Without this scaler, the distance function would amplify the 

 features with relatively larger values. 

 Model Training and Analysis 

 To train our models, we split our data into train and test with 80% going to the 

 training dataset and 20% going to the testing dataset. To accurately compare our 

 models against each other, we used mean absolute error. Additionally, we can 

 intuitively use mean absolute error to evaluate the quality of an individual model without 

 needing comparisons, as the true values of audience ratings are bounded between 0 

 and 100. For instance, a model's mean absolute error of 10 indicates that, on average, 

 the model's predictions deviate by 10 rating points, making it easy to judge whether 

 the error is acceptable in general. 

 1. Linear Regression 

 The first model that we implemented was Linear Regression. Initially, we had a 

 feeling that this model would not be the best representation as our data could not have 

 a linear trend. However, when implemented, we got a mean absolute error of 13.00 to 

 14.00 which depended on the random sampling of the train-test split. Similarly, when 

 we tested on the same training dataset it got very similar results, validating the lack of 

 overfitting. 

 2. Logistic Regression 

 The second model that we implemented was the Logistic Regression model. 

 Using mean absolute error as our error function, this model outputted a training error 

 usually around 14.75 while the test error was usually slightly higher around 15.25. 
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 3. Linear SVC 

 We were curious as to whether using an SVC model would lead to better results 

 than the regression models, so we decided to test it out on our dataset. The test error 

 came to about 15.18 on average, while the training error for the model came out to 

 approximately 15.46, also depending on the sampling of the train-test split. 

 4. Kernel SVM 

 We were also curious about the effects of kernelization, and if our models could 

 be improved upon using Kernel SVM. Our Kernel SVM model performed with a test 

 error of about 14.70 and the training error came to be approximately 14.54 depending 

 on the sampling, slightly better than using Linear SVC. 

 5. Decision Tree Classification 

 The Decision Tree Classifier can handle non-linear data well while handling both 

 numerical and categorical data properly. We implemented this model and usually got a 

 mean absolute error of around 15.00 to 16.00 depending on the train-test sampling. We 

 noticed that the best depth of the decision tree was usually around 6 to 8. 
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 6.  k  -Nearest Neighbor 

 The next approach that was implemented was the  k  -Nearest  Neighbor model. In 

 our code, we implemented this model by trying all  k  values in the range 0 to 80. The 

 best minimum absolute error that we got from all values of  k  was approximately 16.00 

 to 17.00. We generated a graph to see the association between the  k  values and the 

 error and saw that the error value increased for values between 1 to 10, meaning it 

 could be overfitting using those  k  ’s or being subject  to outliers. However, the general 

 trend after  k  equaled 10 was that the error began  to generally decrease with some 

 minor deviations along the way. Using the elbow method, the ideal value of  k  would be 

 around 20 to 30. 

 7. Distance Weighted  k-  NN 

 The implementation of distance-weighted  k-  NN was quite  similar to the regular 

 k-  NN approach defined above. However, the plot of  distance-weighted  k-  NN was 

 different, especially for small values of  k  . In regular  k-  NN we saw the error increase in 

 the range  k  equaling 1 to 10. However, for distance-weighted  k-  NN, the error generally 
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 decreased throughout all  k  values. This showcases that since we are using weights, 

 this model can handle outliers better while not overfitting the data. Using the elbow 

 method to determine the ideal value of  k  would help  us determine the value of  k  to be 

 approximately 20 to 30 again, just like the previous  k-  NN model. The best minimum 

 absolute error was similar to the regular  k-  NN model,  with this model giving a minimum 

 error of 16.00 to 17.00 as well. 

 8. Locally Weighted Linear Regression 

 So far, Linear Regression seems to be the model that performs the best. Another 

 modified version of  k-  NN that we had implemented was  Locally Weighted Linear 

 Regression to try to stick to the success of this model. This model would take the  k 

 nearest neighbors of the new data point and then fit a linear regression line only 

 through those points. Therefore, this model does not focus on generalization from the 

 entire data but instead emphasizes making proper predictions based on local data. We 

 generally saw that a large  k  value was needed for  this model: depending on the 

 train-test split, the optimal  k  was usually between  400 to 600. In general, the minimum 

 absolute error occurred around  k  as 500 which tended  to range from 12.80 to 14.00 



 13 

 depending on the sample. This was a generally solid model in comparison to the 

 previously implemented models. However, this model was very computationally 

 expensive and took over 10 times longer to run than other models. Furthermore, there 

 existed no module in our Python libraries that provided this, so we had to implement it 

 ourselves and it may not be as robust. 

 9. Conclusions 

 The best and most reliable model appeared to be linear regression with a mean 

 absolute error of around 13.00 to 14.00. It is important to contextualize this 

 performance. Given that the true values of ratings range only from 0 to 100, a mean 

 absolute error of even 13.00 represents a notable percentage of the total range, which 

 suggests there is a limit to the model's practical utility. However, considering that most 

 individual features we evaluated in the dataset originally had mean absolute deviations 

 ranging from about 9.00 to 17.00 when calculating their respective averages, most of 

 our models' performances align with the inherent variability in the data. That said, we 

 had hoped that aggregating the data altogether would help our models identify 

 stronger patterns and would lead to significantly improved predictive accuracy, but the 



 14 

 results suggest that the underlying complexity or noise in the data may still be a limiting 

 factor. 

 Applying The Model 

 For the sake of interest, we wanted to apply our model to upcoming movies to 

 predict how they will do before their release. We retrained the most promising models 

 on all the data available (keeping the best  k  -values  we found where necessary) and got 

 these predictions for these four upcoming movies: 

 Movie Name 
 Predicted Audience Rating 

 Lin. Reg.  Decision Tree  k-  NN 

 A Minecraft Movie  58.17  49.00  51.00 

 Mufasa: The Lion King  78.17  85.00  72.00 

 Captain America: Brave New World  51.91  49.00  49.00 

 Flight Risk  54.70  59.0  38.0 

 Conclusion 

 There are many challenges associated with movie predictions. The feature we 

 wanted the most but could not obtain reasonably was budget. We hypothesize that 

 budget is a large predictor because it can serve as a metric that correlates to cast 

 quality, production quality, and marketing quality. However, given the scope of this 

 project, there was not enough time to acquire this data. 

 We should also consider the variability of ratings due to factors such as 

 competitive releases, social media buzz, and revivals through streaming services. With 

 more time, we would like to add more features to the data set. Along with the 

 aforementioned features, it would likely prove useful to have data such as if a movie is 
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 a sequel, if it is based on an existing franchise (book, game, TV show), or what type of 

 role significant actors play (protagonist, villain, etc). 

 Another important consideration is how our preprocessing techniques 

 themselves influence prediction accuracy. While we aimed to uncover patterns through 

 feature engineering and data aggregation, our results suggest that the inherent 

 variability in audience ratings might limit the achievable precision without additional 

 data. Exploring advanced ways of encoding data and other learning techniques could 

 potentially capture relationships between features and ratings more effectively. 

 Additional Information 

 The data parsing, evaluation, and encoding processes, as well as the model 

 training and analysis, can be found below: 

 https://github.com/au-s-ti-n/movie_predictor 

 The relevant directions for installing necessary packages and running the code 

 repository can be found in the README.md file. 

https://github.com/au-s-ti-n/movie_predictor
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